

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 445-448

A [2+2+2]-cyclotrimerization approach for the synthesis of enantiopure isochromans using a carbohydrate derived dialkyne template

C. V. Ramana*, Sharad B. Suryawanshi

National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

Received 1 October 2007; revised 16 November 2007; accepted 20 November 2007 Available online 23 November 2007

Abstract

An easy access to enantiopure isochromans through cross alkyne trimerization of a glucose derived dialkyne was developed. One of the synthesized isochromans was converted into a novel tricyclic nucleoside by simple transformations. © 2007 Elsevier Ltd. All rights reserved.

Keywords: Isochroman; [2+2+2]-Cyclotrimerization; Wilkinson's catalyst; Vorbrüggen reaction; Tricyclic nucleoside

Designing effective routes to construct complex cyclic structures through organo transition-metal catalyzed reactions has been recognized as an attractive strategy for delivering molecular diversity.¹ Integrated with transitionmetal catalyzed reactions, sugar templates have been well deployed to address the synthesis of a variety of complex natural product skeletons.² Amongst the many other metal catalyzed reactions which have been explored on sugar templates, catalytic [2+2+2]-alkyne cyclotrimerizations are important as they deliver highly functionalized aromatic rings appended with sugar rings.³ An early example in this context is an expedient total synthesis of the spirocyclic C-arylglycoside framework closely related to the papulacandins by McDonald et al. utilizing a rhodium(I)catalyzed [2+2+2]-cyclotrimerization⁴ which has been well explored with various sugar derivatives.⁵ Considering the simplicity of the [2+2+2]-alkyne cyclotrimerization combined with our current interest in exploiting carbohydrates for constructing useful molecular diversity,⁶ herein, we report the synthesis of enantiomeric tricyclic molecular skeletons consisting of isochroman units (Fig. 1).

Isochroman (1, 3,4-dihydro-1H-benzo[c]pyran) is a structural unit found in some important biologically active

Fig. 1. Key [2+2+2]-cyclotrimerization approach for enantiopure iso-chromans.

compounds, commercially available drugs and cosmetics.⁷ Several synthetic 6,7-dimethoxyisochromans and their 1-arylated analogues have been disclosed as new investigational drugs with a wide range of activities such as analgesic, muscle relaxant, antidepressant, anti-inflammatory, antihistaminic, anticoagulant and antihypertensive.⁸

Kakimoto et al. prepared a series of tricyclic isochroman derivatives 2 from glucose and evaluated their herbicidal

^{*} Corresponding author. Tel.: +91 20 25902577; fax: +91 20 25902629. *E-mail address:* vr.chepuri@ncl.res.in (C. V. Ramana).

^{0040-4039/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.11.103

activities.⁹ A number of synthetic methods involving electrophilic reactions mediated by Lewis acids, radical and carbanion-mediated annulations, and cycloadditions have been reported for the synthesis of isochroman units.⁷ The oxa-Pictet–Spengler condensation is a widely used method for the preparation of isochroman units.^{7b} An expedient approach for sugar annulated isochromans by Martin et al. using intramolecular Friedel–Crafts cyclization has been reported.¹⁰ Recently, Kaliappan and Ravikumar reported an intramolecular enyne-metathesis and subsequent trapping of the resulting dienes by various quinones for the synthesis of tetracyclic derivatives containing an isochroman ring.¹¹

Our intended strategy is described in Figure 1. The synthesis of the key diyne **3** started with the propargylation of glucose diacetonide **4** to procure the propargyl ether **5**.¹² Selective monoacetonide hydrolysis of **5** followed by sodium periodate mediated cleavage and subsequent Ohira–Bestmann alkynylation¹³ of the intermediate aldehyde provided **3** in 49% overall yield (Scheme 1). With the fully elaborated diyne framework **3** in place, cyclotrimerization was attempted with 2-butyne-1,4-diol (**6**). After a careful examination of some of the catalysts reported for

Scheme 1. Reagents and conditions: (a) NaH, propargyl bromide, THF, 0 °C to rt, 8 h, 89%; (b) (i) 0.8% H₂SO₄, MeOH, rt, 24 h; (ii) NaIO₄-silica gel, CH₂Cl₂, rt, 1 h; (iii) (MeO)₂P(=O)C(=N₂)COCH₃, methanol, K₂CO₃, rt, 7–9 h, 49% for three steps; (c) Rh(PPh₃)₂Cl, toluene–ethanol (4:1), 80 °C, 8 h, 61%.

[2+2+2]-alkyne cyclotrimerization, we found that Wilkinson's catalyst afforded the tricyclic derivative 7 in good yields.^{5d} The spectral and analytical data of 7 were in accordance with the assigned structure.¹⁴ For example, in the ¹H NMR spectrum of 7, the two aromatic-H appeared

Table 1			
Entry	Alkyne	Product(s) R'\	Yield (%)
1	но он	$7 (R = R' = CH_2OH)$	61
2	H-=-H	8 ($R = R = H$)	65
3	AcOOOAc	$9 (\mathbf{R} = \mathbf{R}' = \mathbf{C}\mathbf{H}_2\mathbf{O}\mathbf{a}\mathbf{c})$	57
4	MeO ₂ CCO ₂ Me	10 ($R = R' = CO_2Me$)	45
5	TMSTMS	No reaction	
6	PhPh	No reaction	
7	<i>n</i> -C ₅ H ₁₁ <i>n</i> -C ₅ H ₁₁	No reaction	
8	PhH O	11 (R = Ph, $R' = H$) 12 (R = H, $R' = Ph$) (1:3)	72
9		13 ($R = CH_2NPhth$, $R' = H$) 14 ($R = H$, $R' = CH_2NPhth$) (2:3)	67
10	<i>n</i> -C ₁₄ H ₂₉ ———H	15 ($\mathbf{R} = n$ - $\mathbf{C}_{14}\mathbf{H}_{29}$, $\mathbf{R}' = \mathbf{H}$) 16 ($\mathbf{R} = \mathbf{H}$, $\mathbf{R}' = n$ - $\mathbf{C}_{14}\mathbf{H}_{29}$) (1:1)	49

as singlets at δ 6.99 and δ 7.24 ppm. The characteristic C(1)–H and C(2)–H of the furanose ring appeared as doublets at δ 5.92 and 4.70 ppm ($J_{1,2} = 3.8$ Hz), respectively. C(4)–H appeared downfield (δ 4.89 ppm) as a doublet with J = 2.3 Hz. The observed cross peaks in the NOESY spectrum between C(4)–H and the aromatic ring proton at δ 7.24 ppm were indicative of a possible anisotropic effect of the furanose ring oxygen, which helped in assigning the ratios of the regiomeric compounds resulting from unsymmetric alkynes. The presence of two methyleneoxy groups at δ 62.7 and 66.9 ppm in the ¹³C NMR further confirmed the assigned structure.

To illustrate the flexibility of our strategy, various alkynes were employed in the [2+2+2]-cyclotrimerization and the results are summarized in Table 1. With acetylene, the cyclotrimerization reaction proceeded effectively at 80 °C in a sealed tube to afford **8** in good yield.¹⁵ Unsymmetrical alkynes such as phenylacetylene and hexadec-1-yne gave inseparable regiomeric mixtures in moderate to good yields (Table 1).

Having established the feasibility of the [2+2+2]-cyclotrimerization for the synthesis of sugar annulated isochromans, we next applied isochroman **8** for the synthesis of modified nucleoside **19**. As shown in Scheme 2, isochroman **8** was subjected to acid catalyzed acetonide hydrolysis using acetic acid followed by acetylation in dichloromethane, acetic anhydride and Et₃N to afford a 1:1 anomeric mixture of **17**. Treatment of **17** with uracil under modified Vorbrüggen¹⁶ conditions afforded the protected nucleoside **18**.¹⁷ Subjecting **18** to Zemplen's deacetylation gave the tricyclic nucleoside **19**. The structure of **19**¹⁸ was established with the help of COSY and NOESY spectra that confirmed the assigned β -configuration for **19** beyond doubt.

To conclude, a general synthesis of chiral isochromans via [2+2+2]-cyclotrimerization of a sugar template as the key reaction was reported. One of the derived isochromans was converted into a tricyclic nucleoside by simple synthetic manipulations. Considering the importance of con-

Scheme 2. Reagents and conditions: (a) (i) 60% AcOH, reflux, 2 h, 92%; (ii) Ac₂O, Et₃N, DMAP, CH₂Cl₂, rt, 1 h, 94%; (b) uracil, *N*,*O*-bis(trimethylsilyl)acetamide (BSA), TMSOTf, CH₃CN, 50 °C, 2 h, 79%; (c) NaOMe, MeOH, rt, 20 min, 96%.

formationally restricted nucleosides as antiviral agents and as potential antisense therapeutic and diagnostic agents, the results from the present investigation could be further explored for a strategic construction of these molecular skeletons. Work in this direction is ongoing in our laboratory.

Acknowledgements

We thank the Director (NCL) for the constant encouragement and SBS thanks CSIR (New Delhi) for financial assistance in the form of a research fellowship.

References and notes

- (a) Schreiber, S. L. Science 2000, 287, 1964–1969; (b) Schreiber, S. L.; Nicolaou, K. C.; Davies, K. Chem. Biol. 2002, 9, 1–2; (c) Tan, D. S. Nat. Chem. Biol. 2005, 1, 74–84; (d) Walsh, D. P.; Chang, Y.-T. Chem. Rev. 2006, 106, 2476–2530.
- (a) Sinou, D.; Bedjeguelal, K. J. Carbohydr. Chem. 2001, 20, 335–357;
 (b) Sinou, D.; Bedjeguelal, K. Eur. J. Org. Chem. 2000, 65, 4071–4077;
 (c) Weyershausen, B.; Dötz, K. H.; Nieger, M. J. Organomet. Chem. 2000, 602, 37–44;
 (d) Weyershausen, B.; Dötz, K. H.; Nieger, M. J. Org. Chem. 1999, 64, 4206–4210;
 (e) Weyershausen, B.; Dötz, K. H.; Nieger, M. J. Org. Chem. 1999, 64, 4206–4210;
 (e) Weyershausen, B.; Dötz, K. H.; Lim, J.; Depew, K. M.; Schreiber, S. L. Chem. Biol. 2002, 9, 265–276.
- (a) Yamamoto, Y. *Curr. Org. Chem.* 2005, *9*, 503–519; (b) Ferrier, R. J.; Hoberg, J. O. *Adv. Carbohydr. Chem. Biochem.* 2003, *58*, 55–119; (c) Panigot, M. J.; Kim, S.-U.; Arnold, M. W.; Bailey, A.; Bailey, D.; Faulkner, J. L.; Middleton, J. Toward the synthesis of C-glycoside dendrimers; American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 2000; (d) Roy, R.; Das, S. K.; Dominique, R.; Corazon Trono, M.; Hernández-Mateo, F.; Santoyo-González, F. *Pure Appl. Chem.* 1999, *71*, 565–571.
- McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605–6606.
- (a) Yamamoto, Y.; Saigoku, T.; Ohgai, T.; Nishiyama, H.; Itoh, K. *Chem. Commun.* 2004, 10, 2702–2703; (b) Yamamoto, Y.; Saigoku, T.; Nishiyama, H.; Ohgai, T.; Itoh, K. Org. Biomol. Chem. 2005, 3, 1768–1775; (c) Yamamoto, Y.; Hashimoto, T.; Hattori, K.; Kikuchi, M.; Nishiyama, H. Org. Lett. 2006, 8, 3565–3568; (d) Novak, P.; Pohl, R.; Kotora, M.; Hocek, M. Org. Lett. 2006, 8, 2051–2054.
- (a) Gurjar, M. K.; Nayak, S.; Ramana, C. V. *Tetrahedron Lett.* 2005, 46, 1881–1884; (b) Ramana, C. V.; Mallik, R.; Gonnade, R. G.; Gurjar, M. K. *Tetrahedron Lett.* 2006, 47, 3649–3652; (c) Ramana, C. V.; Patel, P.; Gonnade, R. G. *Tetrahedron Lett.* 2007, 48, 4771–4774.
- (a) Markaryan, E. A.; Samodurova, A. G. Russ. Chem. Rev. 1989, 58, 479–493; (b) Larghi, E. L.; Kaufman, T. S. Synthesis 2006, 187–220; (c) Arimitsu, S.; Hammond, G. B. J. Org. Chem. 2006, 71, 8665– 8668.
- (a) McCall, J. M.; McCall, R. B.; TenBrink, R. E.; Kamdar, B. V.; Humphrey, S. J.; Sethy, V. H.; Harris, D. W.; Daenzer, C. J. Med. Chem. 1982, 25, 75–81; (b) TenBrink, R. E.; Bergh, C. L.; Duncan, J. N.; Harris, D. W.; Huff, R. M.; Lahti, R. A.; Lawson, C. F.; Lutzke, B. S.; Martin, I. J.; Rees, S. A.; Schlachter, S. K.; Sih, J. C.; Smith, M. W. J. Med. Chem. 1996, 39, 2435–2437; (c) Unterhalt, B.; Jöstingmeier, R.; Sanatgar, A. Pharmazie 1997, 52, 186–189; (d) Bury, P. S.; Christiansen, L. B.; Jacobsen, P.; Jorgensen, A. S.; Kanstrup, A.; Narum, L.; Bain, S.; Fledelius, C.; Gissel, B.; Hansen, B. S.; Korsgaard, N.; Thorpe, S. M.; Wassermann, K. Bioorg. Med. Chem. 2002, 10, 125–145; (e) Liu, J.; Birzin, E. T.; Chan, W.; Yang, Y. T.; Pai, L.-Y.; DaSilva, C.; Hayes, E. C.; Mosley, R. T.; DiNinno, F.; Rohrer, S. P.; Schaeffer, J. M.; Hammond, M. L. Bioorg. Med. Chem. Lett. 2005, 15, 715–718; (f) Suzuki, T.; Tanemura, K.; Horaguchi, T.; Kaneko, K. Tetrahedron 2006, 62, 3739–3751; (g) Mohr, P.; Decker,

M.; Enzensperger, C.; Lehmann, J. J. Med. Chem. 2006, 49, 2110-2116.

- Kakimoto, T.; Koizumi, F.; Hirase, K.; Banba, S.; Tanaka, E.; Arai, K. Pest Manag. Sci. 2004, 60, 493–500.
- (a) Martin, O. R. *Carbohydr. Res.* **1987**, *171*, 211–222; (b) Martin, O. R.; Hendricks, C. A. V.; Deshpande, P. P.; Cutler, A. B.; Kane, S. A.; Rao, S. P. *Carbohydr. Res.* **1990**, *196*, 41–58; (c) Kulkarni, S. S.; Liu, Y.-H.; Hung, S.-C. J. Org. Chem. **2005**, *70*, 2808–2811.
- 11. Kaliappan, K. P.; Ravikumar, V. Org. Biomol. Chem. 2005, 3, 848-851.
- (a) Rochet, P.; Vatele, J.-M.; Gore, J. *Synthesis* **1994**, 795–799; (b) Roy, A.; Sahabuddin, S. K.; Achari, B.; Mandal, S. B. *Tetrahedron* **2005**, *61*, 365–371.
- (a) Ohira, S. Synth. Commun. 1989, 19, 561–564; (b) Roth, G. J.; Liepold, B.; Müller, S. G.; Bestmann, H. J. Synlett 1996, 521–522.
- 14. Spectral data of compound 7: $[\alpha]_{D}^{25}$ 28.0 (c 1.2, CHCl₃). IR (CHCl₃) v: 3401, 3016, 2933, 1734, 1513, 1452, 1438, 1376, 1247, 1216, 1163, 1118, 1102, 1080, 1017, 898, 857, 830, 755, 667 cm⁻¹. ¹H NMR (200 MHz, CDCl₃) δ : 1.35 (s, 3H), 1.58 (s, 3H), 3.90 (br s, 2H), 4.09 (d, J = 2.3 Hz, 1H), 4.47–4.60 (m, 5H), 4.67 (d, J = 3.8 Hz, 1H), 4.70 (d, J = 15.1 Hz, 1H), 4.89 (d, J = 2.3 Hz, 1H), 5.92 (d, J = 3.8 Hz, 1H), 6.99 (s, 1H), 7.24 (s, 1H). ¹³C NMR (50 MHz, CDCl₃) δ : 26.1 (q), 26.7 (q), 62.7 (t), 66.9 (t), 73.1 (d), 79.8 (d), 84.4 (d), 104.9 (d), 111.7 (s), 124.6 (d), 128.4 (s), 130.9 (d), 132.1 (d), 134.4 (s), 138.2 (s), 140.2 (s) ppm. ESI-MS *m/z*: 301.26 (100%), 309.36 (2.3%, [M+1]⁺), 331.32 (89.2%, [M+Na]⁺), 347.30 (3.5%, [M+K]⁺). Anal. Calcd for C₁₆H₂₀O₆: C, 62.33; H, 6.54. Found: C, 62.12; H, 6.68.
- 15. Spectral data of compound **8**: $[\alpha]_{D}^{25}$ 21.6 (c 1.5, CHCl₃). IR (CHCl₃) v: 3018, 2927, 1458, 1376, 1216, 1164, 1116, 1091, 1020, 920, 754, 666 cm⁻¹. ¹H NMR (200 MHz, CDCl₃): δ 1.28 (s, 3H), 1.50 (s, 3H), 4.06 (d, J = 2.4 Hz, 1H), 4.55–4.75 (m, 3H), 4.87 (d, J = 2.3 Hz, 1H), 5.89 (d, J = 3.91 Hz, 1H), 6.94–7.01 (m, 1H), 7.17–7.25 (m, 2H), 7.35– 7.41 (m, 1H). ¹³C NMR (50 MHz, CDCl₃) δ : 26.3 (q), 26.9 (q), 67.4 (t), 73.5 (d), 80.1 (d), 84.7 (d), 105.2 (d), 111.6 (s), 124.2 (d), 127.4 (d),

128.7 (d), 129.5 (s), 130.7 (d), 134.8 (s) ppm. ESI-MS: m/z 266.32 (35.9%, $[M+NH_4]^+$), 271.29 (100%, $[M+Na]^+$). Anal. Calcd for C₁₄H₁₆O₄: C, 67.73; H, 6.50. Found: C, 67.44; H, 6.89.

- (a) Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 39, 3654–3660;
 (b) Vorbrüggen, H.; Krolikewiez, K.; Bennua, B. Chem. Ber. 1981, 114, 1234–1255;
 (c) Vorbrüggen, H.; Höfle, G. Chem. Ber. 1981, 114, 1256–1268.
- 17. Spectral data of compound **18**: $[\alpha]_D^{25} 8.6 (c \, 1.0, CHCl_3)$. IR (CHCl_3) v: 3032, 2927, 1750, 1682, 1461, 1371, 1320, 1268, 1225, 1108, 1066, 909, 78, 761, 734, 667, 602 cm⁻¹. ¹H NMR (200 MHz, CDCl_3) δ : 2.17 (s, 3H), 4.18 (d, J = 2.6 Hz, 1H), 4.71 (d, J = 15.16 Hz, 1H), 4.86 (d, J = 15.16 Hz, 1H), 4.95 (d, J = 2.5 Hz, 1H), 5.22 (d, J = 1.6 Hz, 1H), 5.60 (dd, J = 2.1, 8.2 Hz, 1H), 6.15 (d, J = 1.6 Hz, 1H), 7.11 (dd, J = 2.1, 8.2 Hz, 1H), 7.32–7.48 (m, 4H), 9.21 (br s, 1H). ¹³C NMR (50 MHz, CDCl₃) δ : 20.7 (q), 67.3 (t), 75.4 (d), 78.8 (d), 81.7 (d), 89.3 (d), 102.5 (d), 124.4 (d), 127.82 (d), 127.9 (s), 129.4 (d), 130.6 (d), 134.1 (s), 140.5 (d), 150.2 (s), 163.1 (s), 169.2 (s) ppm. ESI-MS: m/z344.09 (5.11%, [M]⁺), 367.02 (100%, [M+Na]⁺). Anal. Calcd for C₁₇H₁₆N₂O₆: C, 59.30; H, 4.68; N, 8.14. Found: C, 59.03; H, 4.90; N, 7.97.
- 18. Spectral data of compound **19**: $[\alpha]_D^{25}$ 60.4 (*c* 1.9, CHCl₃). IR (CHCl₃) *v*: 3383, 3218, 3108, 3068, 2923, 2844, 2252, 1775, 1695, 1493, 1464, 1408, 1393, 1373, 1360, 1322, 1265, 1206, 1114, 1097, 1076, 1059, 999, 960, 908, 877, 813, 788, 733, 649 cm⁻¹. ¹H NMR (200 MHz, CDCl₃) δ : 4.22 (d, *J* = 1.9 Hz, 1H), 4.52 (s, 1H), 4.64 (d, *J* = 15.1 Hz, 1H), 4.72 (d, *J* = 15.1 Hz, 1H), 5.24 (d, *J* = 1.9 Hz, 1H), 5.48 (d, *J* = 8.0 Hz, 1H), 5.65 (s, 1H), 5.89 (s, 1H), 7.1 (dd, *J* = 2.3, 8.1 Hz, 1H), 7.15 (d, *J* = 8.03 Hz, 1H), 7.34–7.36 (m, 2H), 7.46 (dd, *J* = 2.3, 8.1 Hz, 1H), 10.61 (br s, 1H). ¹³C NMR (50 MHz, CDCl₃) δ : 66.9 (t), 77.1 (d), 80.1 (d), 80.7 (d), 94.2 (d), 101.1 (d), 124.3 (d), 127.8 (d), 128.8 (s), 129.2 (d), 130.8 (d), 134.3 (s), 140.7 (d), 151.1 (s), 164.2 (s) ppm. ESI-MS: *m/z* 325.01 (100%, [M+Na]⁺), 340.99 (7.3%, [M+K]⁺). Anal. Calcd for C₁₅H₁₄N₂O₅: C, 59.60; H, 4.67; N, 9.27. Found: C, 59.33; H, 4.92; N, 8.99.